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Relativistic Neutron Spin-Echo Theory

Feng Li,! Lei Ma,' and Yong-de Zhang'

Received February 21, 1992

We consider the neutron Dirac equation with electric moment in addition to
magnetic moment, solve it rigorously in a uniform electromagnetic field, and set
up the relativistic neutron spin-echo theory with a magnetic moment. We also
solve the equation in an alternating magnetic field.

1. INTRODUCTION

For the interaction between the electromagnetic field and the neutron’s
electric moment and magnetic moment, the total Lagrangian density is

=L+ L+ &, (1.1
where ~
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Here p and A are, respectively, the magnetic moment and the electric
moment of the particles. F,, is the electromagnetic field tensor and f,,, is the
dual tensor of F,,. From the Euler—Lagrange equation we can obtain the
neutron Dirac equation

(ya"i_m_i uv uv_z uvfuv)'p 0 (12)
For A =0, equation (1.2) becomes the usual result (Zhang, 1989)
<y°0+m > O ”v)lﬁ 0 (1.3)

It is easy to prove that there exists a special U(1) symmetry group. We

denote
_(Fw —(H
Gﬂv—<fw>, D‘(z) (1.4)

(y 0+ m— ; cmDGW>|// =0 (1.5)

We apply the U(1) rotation of the following form to all two-component

vectors (§):
a cosf sinf\/a
(b)_)<——sin 6 cos 0>(b> (1.6)

We may find that equation (1.5) does not change under the transformation
(1.6). But this symmetry does not introduce a Noether current,
Now we consider a general Dirac equation

Then we obtain

i%¢=(a'P+ﬁm+H,)t// (1.7)
where H, is a bounded Hermitian operator without any differential opera-
tor in it. It is regular everywhere except the boundary surface, and not
continuous on the boundary surface. It can be proved that the four
components of i are continuous on the boundary by taking a small
cylinder through the boundary surface.

Lemma. Suppose that M, N are two commuting Hermitian operators,
and they have the same orthogonal and normalized complete set of states
{Im;, n;, I, >}. (Here I, are some eigenvalues of other operators in the
complete commuting set of operators.) We have

Mlmia n;, lk>=m"misn‘ Le>
Nlmu lk>_ _,-'mn _/’ lk>
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Then the solutions |¢) of the equation M|e) = N|p) are only composed
of states in which m; is equal to n,.

Proof omitted.

2. RIGOROUS SOLUTION FOR NEUTRON DIRAC EQUATION IN
A UNIFORM ELECTROMAGNETIC FIELD

We apply transformation (1.6) to (1.2), and choose 6 such that
sin 8 = A/(A%? 4+ u®)'? and cos 0 = /(A% + p?)'?. Equation (1.2) takes the
form,

|-
(y -8+m——2—awa)l/1=0 (2.1
where
@ =y cos @+ 4 sin 0, A'=—usinf + Acosf 22)
F,,=F,cos0+f,sinb, fw=—F,sinb+f, cosd ‘

F,, is the effective electromagnetic field tensor, so the “elimination” of 4 is
only in form, not in essence.

For convenience, we omit the prime in the following calculations.
Suppose the stationary state wave function of equation (2.1) to be

_ (PN .
Y(r, 1) = (x(r) )e (2.3)

Substituting this into equation (2.1), we get
{e —m —[(¢ + m)* — p’B’] " '[(e + m)(P? + p°E?) — 2P - (E x B)u’] }¢
= {[(e + m)* — u?B*] " '[2(c¢ + m)P x E* + 2u(P - B)P + 21°(B* E)E
— u(P* + °E2)B] — uB} - 6¢p (2.42)

_(e+m+puc-B)o- (P—iuE)
- (e + m)? — u’B?

¢ (2.4b)
It is easy to find that equation (2.4a) has the form M¢ = N, where
N=V-¢, and
M(P,E,B,g)=¢ —m —[(e + m)? — u?B?] ~[(e + m)(P? + u*E?)
—2P - (E x B)u?]
V(P E,B,¢) =[(c + m)*— u*B? ~'[2(¢ + m)P X Eu + 2u(P - B)P
+2u*(B -+ E)E — u(P? + u’E*)B] — uB

(2.5)
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According to the Lemma, we know that ¢(r) is composed of such
common eigenstates of M and N in which m = n. Obviously, the eigenstate
of M is also the eigenstate of the momentum operator P; we denote it by
U exp(iP - r). Here U is a two-component spinor. Substituting it into the
equation M¢ = N¢, we find

V- oU=nU (2.6)

The solutions are

(2.7a)

P,E, B,s) — iV,(P,E B,
U(P,E,B,s)=c<V"( . B,2) — 1V, (B, 8)>

sV(P,E,B,¢) — V,(P,E,B, g)
n=sV(P,E,B,¢)
=s[Vi(P,E,B,e)+Vi(P,E,B, &)+ V(P E,B,g)]"? (2.7b)

Here c is a normalization constant, and s = + 1 represents the direction of
spin. So we affirm the common eigenstate of M and N to be

VAP,E,B,¢) —iV,(P,E,B,¢)\ ..
- iP-r 2
() c(sV(P, E,B,e) — V,(P,E,B,¢) (28)
From the Lemma, the following equation must hold:
m(P,E,B,¢) =sv(P,E, B, ¢) 2.9)

Here v is obtained by substituting the corresponding eigenvalue of P into
the formula of V. Substituting an arbitrary set of {P,E,B, ¢} which
satisfies {2.9) into (2.8), we get a rigorous solution of (2.4a); further, we
find the corresponding solution of (2.4b). Thus (2.1) is solved.

In the following we try to find the energy spectrum e.

Multiplying (1.3) by the operator (y - 0 +m + 1/2u0,,F,,), we get

(mz——Pz—-—zF F, >2¢
2 uve py
= —i [tzF —(2 mP, — 2uP F Zlﬂ
2 uvf;tvys ( l U v vu)yy

= [ _%4 (Fufow)? — 4m*P? + 4p2(P#F#v)2]¢ (2.10)

and after using
F,.fw=4E-B
F,F,=2B"-E
(P,F,)=(BxP)>+¢’E*+ 2P (BXE)— (P E)?
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we find that equation (2.10) becomes
(€% +m?* — P>+ u’E? — u?BH)*y
=4{pY[(Bx P)?+¢’E*+ 2:P- (BxE) — (P-E)}
— m*P? 4 m%? — uH(E - B2}y

Because Y is arbitrary, we may remove it from both sides; then we
obtain the equation of the energy spectrum as follows:

(82 _ Pz _ m2 — HZBZ — #2E2)2 — 8P
“(Bx Eyu? —4[(uB x P)2 + (P x uE)*
+ (WE X uB)? +m?u?B? =0 (2.11)

This is a fourth-power equation; we may get ¢ by solving the equation.
In particular, if P+ (B x E) =0, i.e., P, B, E are in one plane, (2.11) may be
turned into a second-power equation as follows:

g2 ~P? —m?— u’B* — u’E?
= +2{(uB X P)? + (P x uE)? + (uE x uB)? + m?u*B?|'? (2.12)
When the electric moment exists, we denote
pu=dcos#@
A=dsin @
d=(u?+ 132
and the energy spectrum equation takes the form
[e2 — P? — m? — d¥(B? + E?)}* — 4d*m?
x (B cos 6 + E sin 6)? — 4d*[(E x B)?d?
+ (B x P)2+(P x E)? +8ed’P * (E x B) =0 (2.13)

It is noticeable that when 8¢d?P - (E x B) # 0, the positive and nega-
tive energy levels are unsymmetric. For the same energy level, if E and B
are fixed, ¢ is a function of both the momentum P and the direction of spin.
When we only consider the positive energy solutions, there are two and
respectively correspond to s = +1,5s = —1,

e=¢(P,E, B,s) (2.14)

From all of the above, the general solution of equation (2.1) in a
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uniform electromagnetic field is

Yr,n=3 ¥

P s=+1¢=¢P.EB,s)

I 0 V;_igy
sV — .
x< AP, s,e) {0 o+ (P—iuE) |- v —iVZ - gi®rr—e)
e+m—puc-B ¥ 7
sV -V,
(2.15)

The coefficients A(P, s, &) are determined by the normalization condi-
tions and the boundary conditions.

If we only consider neutrons moving along +z directions, the wave
functions are four-fold degenerate. We denote these wave functions by
(omitting the normalization constants)

¢(P=P_ ,,,s=+1)=¢""(2)
Pp(P=P__,s=-1)=¢"7(2)

¢ = HP=P_, . s=+1)=¢"*(2) (2.16)

HP=P__,,s=—-1)=¢""(2)
where
P {P* =(0,0,P*(¢,B,E,s)), P*(,B,E,5) >0, Pin +z direction
P =(0,0, -P (¢,B,E,s)), P (¢B,E, 5)>0, Pin —z direction

x(z) can be obtained similarly.

3. RELATIVISTIC NEUTRON SPIN-ECHO THEQORY

Mezei (1972) discussed the idea of the neutron spin echo (Fig. 1). But
Mezei’s theory is based on the Pauli equation, and is doubtful for the
relativistic case. Here we discuss the problem based on the rigorous
solution of equation (2.1).

It is known that the neutron wave function in every zone can be
expanded with {¢p**, ¢+, ¢~ ", ¢ "}and {y ", x ",x . x" "}

$(2)=A¢" " +Bd* " +C¢" T+ D¢~ (3.12)
@D =A4yd* "+ BT +Chdp~t +Dydp - (3.1b)
@) =Aud*t +Bpd*t "+ Cud =t + Dy~ (3.1¢)

Ov(@) =And" +Byo* - (3.1d)
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From equation (2.5) we obtain
PZ
x z y u ,V< +(8 +m)2—/,t2B2> ( )
The eigenstates of V * ¢ are (omitting the normalization constants)
iB,
= =+1 3.3
Then we find
4)[ = d)i = eiongS + re ‘iPZaS (343)
by = @} = ae™7 fo, + be T Ty, (3.4b)
dur = Qi = cePEFa, + de TRy (3.4¢0)
P = div = te’a, (3.4d)
Similarly we get
r P .
xl.—_8+me’”oz_s—— 8+me“”’ocﬁs (3.5a)
aPf » bP; -
- S Pty S p-iPizy 3.5b
xu ¢+m—suB ™ e4+m—suB x (3.50)
cP*, o dP_, b=z
X = iPtas Poszg . (3.50)

e+ m+ suB oL"_z’:+m—+—s,uB
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e’z _, (3.5d)

=1
X1v e +m

Here r, a, b, ¢, d, and ¢ are six constant coefficients. It is easy to prove that
P} =P;, and we denote them as P,; therefore, we have

P, =(e>—m?+ u’B? + 2s¢uB)'? (3.6)
From the continuous conditions
o(—L) =¢u(—L),  ¢u(0)=0u(0), (L) = (L)
n(—L)=(-L1L), xu{(0) = x1u (0), xu(L) = xv (L)

we may calculate f Denoting A, =P /(e +m — usB), A=P/(e +m),
[=e L and I, = e %L, we find

A A? AA . A* A, AA, A_, 21171
= 2A|:<2+4A +4A +H+4+4A_s )ll I~
(A A, A, A? A AA_,  AA, >lzll

274 4 a4, 44 T a4 T4

AA_, AN, , .|
~S-f- 4 44 4>l lsl_s:l (3.7a)

LY P _A_—l ! 4., ! —1 -1 _
r—4|:ls l_s+A 171 Al 12+ 17+,

— 8 5 —5

A A_, A A A
e e B B MY A (ol ARy
As sl—: + As ls l—s A , —s As l—sls A__g st—s
A A
—— l — 7! T |- 3.7b
As lsl—s + sl—s + As ls l—s A._s st —s . s:| ( )

Obviously, in equations (3.7), s and —s are symmetric, i.e., incident
neutrons with different spin directions have the same reflection and trans-
mission coefficients.

Suppose the incident wave function to be ¢; =k, ¢ =+ + k=,
where k; and k, are two superposition coefficients. The reflection and
transmission waves possess the same ratio of superposition coefficients as
that of the incident wave. That is to say, the neutron state does not change
after passing the four zones. The second magnetic field “climinates” the
effect of the first magnetic field just as in the nonrelativistic case.

Now we calculate the neutron current j, = cyy, . We suppose the
neutron wave functions in zones I and IV to be
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(3.8a)

)
ne=er| N
&+ <

(»)
i@ = |

N
Po, f(a (3.8b)
e+m (/3)

where (%) is an arbitrary two-component spinor. We get

y

2P
I (o2 2 _lypl2 Il
Je=(al+ 80—, (=P Ji=J5=0 (3.92)

e mee o

Because the current is conservative, we obtain
rP -+t =1 (3.10)

Generally, even if the magnetic field is very strong, we can also adjust
the other conditions so that [t| can be equal to 1 and |r| is equal to zero,
i.e.,, neutrons are not reflected by the magnetic field. The resonance
conditions for transmission are

Ps=+1,¢B) L=nn

Ps=—1.6B) L=nmn (n, n’ are integers) (3.11)

Under these conditions, we have

t=e —2i(e2 — m2)1/2Lei(n —n)n

(3.12)
r=0

Now we have established the spin-echo theory for the relativistic
neutron with magnetic moment, and pointed out that Mezei’s theory may
be extended to the relativistic case.

4. NEUTRON DIRAC EQUATION IN AN ALTERNATING
MAGNETIC FIELD

Now we consider the case that the neutrons pass a zone with an
alternating magnetic field (Fig. 2). Assume that P = (0, P, 0), and suppose
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the wavefunction in 0 <y < L to be
¢l(t)> iP <¢2(t)) —iP
= ety 4+ e~ 4.1
Yu (x,(t) (0
After substituting equation (4.1) into (1.3), we easily get
i<d_)l(t)> — <m — po;3 B() o, P ><¢1(’)) (4.22)
x1(D o, P —m + po3 B(1) )\ x, (9
. (;52(,)) (m — o3 B(1) —a,P )(4,2(0)
il * = (4.2b)
<X2(t) —0a,P —m + uos B(1) ) \ x2(9)
From equation (4.2a) we find
Oy . » ~
0(0) = [ié1() = (m — o3 B) (1] (4.32)
[
HOES ;2 [i7:(8) + (m — po; By, (1)] (4.3b)
We substitute equation (4.3a) into (4.3b) and obtain
1 — 2ipos By, + (P2 +m?)p, — (o3 B + p?B)p =0 (4.4)
Denoting ¢,(¢) = ¢;()e”" and &’ = (P*+ m?)'?, we get
¢ — 2i(e’ + po; B)p — (iuos B + 2uc, Be' + u?BH)p, =0 (4.5

Let

s (8D
¢l(t)_<h(t)>



Relativistic Neutron Spin-Echo Theory 1009

Then equation (4.5) becomes

g —2i(e’ + uB)g — (iuB + 2uBe’ + u?*BH)g =0

.. . . 4.6
h —2i(e’ — uB)h + (iuB + 2uBe’ — u’BHh =0 (46)
The solutions of (4.6) are
g(t) _ e[ino sin{w!? + p))/w, ¢+ eZia't
(¢ + %) @7

/’l(t) =¢ — [iuBy sin(w? + (p)]/w(C; + C;e2is’t)

$.() = <f(f)> - (e““”‘) sintr - o (e o = 4 ¢ ) ) (4.82)

7[([) e —[iuBy sin(wt + (p)]/co(cl1 e~ ig't + C;eis”)

Thus,

1 + imn — iuB, cos(wt + @)y ) (4.8b)

1
H=—
0@ P ( — & —imé + iuB, cos(wt + @)¢&
The solution of equation (4.2b) can be obtained similarly.

Now we only consider the positive energy states; the ¢ in three zones
are

AN oo s (AN
— iPy — ig't —iPy —ig't
ol (A ,)e + r(A ,>e (4.9a)

{iuBg sin(wt + @)l/w [iuBg sin{wi + @)/
¢”=< Ce >eiPy—ie’t+( De >e—i1’y—ie’t (4.9b)

C'e —[iuBy sin(w! + @)}/ w D'e —[iuBg sin(wi + @))/w

5,

F\ .
b= <F,)eu’y T (4.9¢)

where 4, A’, C, C’, D, D’, F, F’ are eight constant coefficients. Here we
omitted the expressions of y.

We suppose that the neutrons reach y =0 ass=0and y=Last=T.
From the boundary conditions we obtain

C = ¢ —(inBo/w)sing 4
C’ = olinBol@)sing 4
D = re —(pBo/@)sin g 4
D’ = relinBo/w)sing 4+ (4.10)
F = pUuBo/w)sin(wT + ¢) —sin wl( 1+ re —iPL)A
F' = ¢ —rBo/w)sin(@T + ¢) —sin w]( 14 re —iPL)A ’

Now we try to find the resonance condition. It requires that

AN o
Lo 0C<A,>elpy_m
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i.e.,, F/A = F'|A’, then we obtain

E£—9 [sin(wT + @) — sin @] = nx (4.11)
where n is an arbitrary integer. If ¢ =0, equation (4.11) becomes
B, .
% sin T = nx (4.12)

If the above condition is satisfied, the effect of the magnetic field seems
to be “eliminated.” As a whole, the zone of the magnetic field is like a free
space.
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