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Relativistic Neutron Spin-Echo Theory 

Feng Li, ~ Lei Ma, ~ and Yong-de Zhang 1 

Received February 21, 1992 

We consider the neutron Dirac equation with electric moment in addition to 
magnetic moment, solve it rigorously in a uniform electromagnetic field, and set 
up the relativistic neutron spin-echo theory with a magnetic moment. We also 
solve the equation in an alternating magnetic field. 

1. INTRODUCTION 

For the interaction between the electromagnetic field and the neutron's 
electric moment and magnetic moment, the total Lagrangian density is 

" ~  = ~ 0  "~ ~Oem "[- "~i  (1.1) 

where 
Ae0 = - ~ ( 7  " d + m)r 
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Here # and 2 are, respectively, the magnetic moment and the electric 
moment of the particles. F~v is the electromagnetic field tensor and f,v is the 
dual tensor of F~v. From the Euler-Lagrange equation we can obtain the 
neutron Dirac equation 

7 "c3 +m--I't2 a~,~F~ -~auvfu  v i f = 0  (1.2) 

For 2 = 0, equation (1.2) becomes the usual result (Zhang, 1989) 

( ) 7.0+m---~a~,~Fu~ ~k=0 (1.3) 

It is easy to prove that there exists a special U(1) symmetry group. We 
denote 

G~,v \ f u j i  D = ( ~ )  (1.4) 

Then we obtain ( 1 ) 
�9 a + m  -Scr .JSG.v 0 = 0  (1.5) 

We apply the U(1) rotation of the following form to all two-component 
vectors (g): 

(~ )  ( c o s 0  sin 0"] (a ']  
- s i n 0  c o s 0 ] \ b J  (1.6) 

We may find that equation (1.5) does not change under the transformation 
(1.6). But this symmetry does not introduce a Noether current. 

Now we consider a general Dirac equation 

t ~ b  = (~" P+/3m +Hl)tp (1.7) 

where/-/1 is a bounded Hermitian operator without any differential opera- 
tor in it. It is regular everywhere except the boundary surface, and not 
continuous on the boundary surface. It can be proved that the four 
components of ~b are continuous on the boundary by taking a small 
cylinder through the boundary surface. 

Lemma. Suppose that hit, ~ are two commuting Hermitian operators, 
and they have the same orthogonal and normalized complete set of states 
{line, nj,/k>}. (Here lk are some eigenvalues of other operators in the 
complete commuting set of operators.) We have 

Mlml, nj, 1,~ > = m, Imi, nj, 11, > 

Nlm,, nj, lk > = nj Im,, nj, lk > 
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Then the solutions I~p) of the equation/hrlq~) = Niq~) are only composed 
of states in which m~ is equal to nj. 

Proof  omitted~ 

2. RIGOROUS SOLUTION FOR NEUTRON DIRAC EQUATION IN 
A UNIFORM ELECTROMAGNETIC  FIELD 

We apply transformation (1.6) to (1.2), and choose 0 such that 
sin 0 = 2/(22 + #2)~/2 and cos 0 = #/(22 + #2)1/2. Equation (1.2) takes the 
form,  

where 

( "' ) 7 " ~ + m - - f a , v F ' ~ v  O = 0  (2.1) 

/~' = # cos 0 + 2 sin 0, 

F',v = Fur cos 0 +f ,v  sin 0, 

2'  = - #  sin 0 + 2  cos 0 

f ~  = -F~v sin 0 +fur  cos 0 
(2.2) 

F~v is the effective electromagnetic field tensor, so the "elimination" of  2 is 
only in form, not in essence. 

For  convenience, we omit the prime in the following calculations. 
Suppose the stationary state wave function of  equation (2.1) to be 

_, . , ,  

~p(r, t) = t x ( r ) ) e  (2.3) 

Substituting this into equation (2.1), we get 

{e - m - [(5 + m) 2 - #2B2] -l[(e + m)(W + #2E2) - 2 P .  (E x B)#2]}4~ 

= {[(5 + m) 2 - #2B2] - 112(~ + m)P x E" + 2#(P"  B)P + 2pS(B �9 E)E 

_ #(p2 + #2E2)B ] _ #B} .  ~4~ (2.4a) 

(5 + m  + # o " B ) o "  ( P -  igE) 
= (t + m) 2 -- #2B2 ~b (2.4b) 

It is easy to find that equation (2.4a) has the form M~b = Nq~, where 
N = V - g ,  and 

34(P, E, B, e) = e - m - [(e + m) 2 - #2B2] -l[(e + m)(P 2 + #2E2) 

- 2 P .  (E  x B)#  2] (2.5) 

V(P,  E, B, 8) = [(~ + m) 2 - #2B2] -112(~ + m ) P  • E#  + 2#(P"  B)P 

+ 2#3(B �9 E)E - #(p2 + #2E2)B ] _ #B  
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According to the Lemma, we know that ~b(r) is composed of such 
common eigenstates of  _~ and N in which m = n. Obviously, the eigenstate 
of A~r is also the eigenstate of the momentum operator P; we denote it by 
U exp(iP" r). Here U is a two-component spinor. Substituting it into the 
equation .Mq~ = .N~b, we find 

V " ~U = nU (2.6) 

The solutions are 

I'Vx(P, E, B, t) - iVy(P, E, B, e)'~ 
U(P, E, B, e) : e ~ s V ( P ,  E, B, e) - Vz(P, E, B, e) } (2.7a) 

n = sV(P, E, B, e) 

=s[VZ~(P, E, B, e) + Vz(P, E, B, e) + V~(P, E, B, e)] ~/2 (2.7b) 

Here c is a normalization constant, and s = + 1 represents the direction of 
spin. So we affirm the common eigenstate of  _~r and 37 to be 

f Vx(P, E, B, e) - iVy(P, E, B, e)'~ iP., 
q~(r) = e~sV(P,  E, B, e) - Vz(P, E, B, e) )e  (2.8) 

From the Lemma, the following equation must hold: 

m(P, E, B, e) = sv(P, E, B, e) (2.9) 

Here v is obtained by substituting the corresponding eigenvalue of  P into 
the formula of  V. Substituting an arbitrary set of  {P, E, B, e} which 
satisfies (2.9) into (2.8), we get a rigorous solution of  (2.4a); further, we 
find the corresponding solution of  (2.4b). Thus (2.1) is solved. 

In the following we try to find the energy spectrum e. 
Multiplying (1.3) by the operator (7 " O + m + 1/21aa,vFuv), we get 

~2 y 
m _ p2 _ -2 FuvFu~ j tp 

= [ 2 #2Fu~fuv,, - ( 2imPu - 21~P~F~,)yu ]Z~ ' 

4mZP z = [ - - ~  (F~vf~v) 2 -  +4#2(P~Fu~)2]O (2.10) 

and after using 

= 4 r .  R 

F, vF,~ = 2(B 2 - E 2) 

(PuFuv) z = (B x p)2 + e2E2 + 2eP .  (B x E) - ( P .  E) ~ 
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we find that equation (2.10) becomes 

(e2 + m 2 _ p2 + #2E2 _ #2B2)2~p 

= 4{#2[(B • p)2 + e2E2 + 2eP" (B x E) - (P"  E) 2] 

_ m2p2 + m2e 2 _ #4(E .  B)2)~ 

Because ~O is arbitrary, we may remove it f rom both sides; then we 
obtain the equation of the energy spectrum as follows: 

( e 2  - -  p2 _ m 2 _ # 2 B 2  _ f 1 2 E 2 ) 2  _ 8eP 

- (B  • E)# z - 4[ (#B • p)2  + ( p  • #E)2  

+ (#E • #B) 2 + m2#2B 2] = 0 (2.11) 

This is a fourth-power equation; we may get e by solving the equation. 
In particular, if P "  (B • E) = 0, i.e., P, B, E are in one plane, (2.11) may be 
turned into a second-power equation as follows: 

e2 _ p2 _ m 2 _ # 2 B 2  _ gaE2 

= +2[(#B • P)2 + (P  • #E)2 + (#E • ktB)2 + m2#2B2] ~/2 (2.12) 

When the electric moment  exists, we denote 

# = d cos 0 

2 = d sin 0 

d =  (#2 + 22)1/2 

and the energy spectrum equation takes the form 

[e2 _ p2 _ m 2 _ d 2 ( B  2 + E 2 ) ] 2  _ 4 d 2 m  2 

• (B cos 0 + E sin 0) 2 - 4d2[(E • B)2d 2 

+ (B • p ) 2 + ( p  • E)z] + 8 e d 2 p .  (E • B) = 0  (2.13) 

It is noticeable that when 8 e d Z P  �9 (E • B) ~ 0, the positive and nega- 
tive energy levels are unsymmetric. For  the same energy level, if E and B 
are fixed, ~ is a function of  both the momentum P and the direction of spin. 
When we only consider the positive energy solutions, there are two and 
respectively correspond to s = + 1, s = - 1 ,  

= ~(P, E, B, s) (2.14) 

From all of  the above, the general solution of equation (2.1) in a 
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uni form elect romagnet ic  field is 

~(r, t) --- E E E 
P s =  • 1 e = e ( P , E , B , s )  

Vx - iVy 

s V - V ~  

Vx -ivy 
s V - V ~  

�9 e i ( P  " r  - s t )  

J 
(2.15) 

The  coefficients A(P,  s, e) are determined by the normal iza t ion  condi-  
t ions and the b o u n d a r y  condit ions.  

I f  we only consider  neut rons  moving  a long ___z directions, the wave 
funct ions are four-fold degenerate.  We denote  these wave funct ions by 
(omi t t ing  the normal iza t ion  constants)  

where 

p = ~'P+ - (0, O, P+(e, B, E, s)), 
P -  (0, 0, - - P - ( e ,  B, E, s)), 

~((z) can be ob ta ined  similarly. 

I ~bCP = P+= +1, s = + 1 )  - ~b ++(z)  

/qS(P = P+= - - l ,  S -m- - -  1) - q5 + - ( z )  

~b = </tkCP = Pj-= + , ,  s = + 1) = tk-+Cz) 
l 

Lq~( P = PT= l, s = -- 1) = q~ - - ( z )  

P+(e ,  B, E, s) > 0, 

P - ( e ,  B, E, s) > 0, 

(2.16) 

P in + z  direction 

P in - z  direction 

3. R E L A T I V I S T I C  N E U T R O N  S P I N - E C H O  T H E O R Y  

Mezei (1972) discussed the idea o f  the neu t ron  spin echo (Fig. 1). But 
Mezei ' s  theory is based on the Pauli equat ion,  and is doubt fu l  for  the 
relativistic case. Here  we discuss the p rob lem based on the r igorous 
solution o f  equat ion (2.1). 

It  is known that  the neut ron  wave funct ion in every zone can be 
expanded  with {~b + +, ~ + - ,  q~ - +, ~b - - } and {Z + +, Z + - ,  Z - +, Z - - }. 

q~l(Z) = Al~b ++  "1-BI~ + -  -'1-Cl~) - +  -I-D~qS-- (3.1a) 

~bll(Z) -- Allah ++  --~ Bll(~ + -  + Cil~b - +  + D i , q ~ - -  (3.1b)  

~biH(2) = AH, q~ ++ -k- B,Hq~ + -  -+- G,,~b - +  -+- OHx~b - -  (3.1c) 

~b,v(Z) = A,v~b ++  + B,v~b + -  (3 .1d)  
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From equation (2.5) we obtain 

V x = V z = O ,  Vy=-- l .~By  1 +(e +m~- #2B 2 (3.2) 

The eigenstates of V ' ~  are (omitting the normalization constants) 

G \ s B / l  s = ___1 (3.3) 

Then we find 

ff)l = ff)sl = eit'Z~ + r e - i p ~ ,  (3.4a) 

qSn = cP~l = aeiPr ~G + b e - i J ' i  ~ s  (3.4b) 

q5 m = dp~, =_ ce i e+- :~  + d e - i e - - ~  G (3.4c) 

C~v = dp~v = t e " ~  (3.4d) 

_ _aPe +_ eie+ ~ b P 7  - i p r  ~o~ (3.5b) 
)fi~ ~ + m - slzB -~ ~ + m - s # B  e _~ 

_ cP+-~ i?+_: d P - s  - i e - :  (3.5c) 
Zm ~ + m + s # B  e ~ - s  ~ + m + s # B  e - ~ - s  

Similarly we get 

P P 
ZI - eieZ~_ s - r e - i e ~ _ ~  (3.5a) 

~ + m  ~ + m  
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P 
XIV = t eieZcr (3.5d) 

8 + m  

Here r, a, b, c, d, and t are six constant coefficients. It is easy to prove that 
P~+ = P s ,  and we denote them as Ps; therefore, we have 

p,  = (~2 _ m 2 + #2B2 + 2s~#B) 1/2 (3.6) 

From the continuous conditions 

( ~ I ( - - L )  = q ~ l l ( - - L ) ,  q~n(O) = r r = r  

Z l ( - L )  = g n ( - L ) ,  zH(O) = gin(O), zm(L) = ZIv(L) 

we may calculate t. Denoting As = Ps/(~ + m - #sB), A = P/(e + m), 
1 = e - ; e t ,  and ls = e-;P, L, we find 

t = 2 A  -~+4--~_ + - - ~ - ~ f + ~ + ~ - + 4 - - ~ _  + 1217'l:~ 

( A  A_s A s A 2 A Z + A A _ s  ~ _ ~ )  

+ 2 4 4 4A_  s 4A s 4A s + _ Flfl_s 

+ "2-~ 4As 4As 4A s ~ 4 4A_~ 

( :) 1-1 A A 2 A 2 AA~ A_s AA_s  12lfl_ 1 (3.7a) 
+ - 2 4 4 A _ s  4A, 4A_ -~ 4 4A s 

r=-~  l, l_ ,  + A l l ' l _ ]  + l ~ - ' l _ s + Z s l - ]  A 17 ' l  s 
- - s  

A s l _  1 A, A s A A lsl-] + - l~ -1 - - - l s  - l l  s - ~ -  l-]l~ lsl_ ~ 
- A s  - - s  A _ s  - A s  - -Y2-  

A l, l _ ~ + l f l _ s + A l j  - l_~+ s l _ s +  12'ls (3.7b) 
--A--~ As ~ _ 

Obviously, in equations (3.7), s and - s  are symmetric, i.e., incident 
neutrons with different spin directions have the same reflection and trans- 
mission coefficients. 

Suppose the incident wave function to be ~b; = kl~U = +1+ k2~bs=-~, 
where kl and k2 are two superposition coefficients. The reflection and 
transmission waves possess the same ratio of  superposition coefficients as 
that of  the incident wave. That is to say, the neutron state does not change 
after passing the four zones. The second magnetic field "eliminates" the 
effect of  the first magnetic field just as in the nonrelativistic case. 

Now we calculate the neutron current j ,  = cqY?,O. We suppose the 
neutron wave functions in zones I and IV to be 
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(;) i 
where (}) is an arbitrary two-component spinor. We get 

j I  z = (1 12 + ( 1 -  ]r[2), j i  = j ~  ~ 0 

(3.8a) 

(3.8b) 

(3.9a) 

2 2 P  j~v = j~yV = 0 (3.9b) 

Because the current is conservative, we obtain 

]r[ 2 + It] 2 = 1 (3.10) 

Generally, even if the magnetic field is very strong, we can also adjust 
the other conditions so that [t I c an  be equal to 1 and Ir[ is equal to zero, 
i.e., neutrons are not reflected by the magnetic field. The resonance 
conditions for transmission are 

P(s = +1,  e, B) �9 L = n ~  

P(s = -- 1, e, B) �9 L = n'rc 
(n, n'  are integers) (3.11) 

Under these conditions, we have 

t = e - 2i(e2 - m 2 ) l / 2 L e i ( n  - n')rc 

r = 0  
(3.12) 

Now we have established the spin-echo theory for the relativistic 
neutron with magnetic moment, and pointed out that Mezei's theory may 
be extended to the relativistic case. 

4. NEUTRON DIRAC EQUATION IN AN ALTERNATING 
MAGNETIC FIELD 

Now we consider the case that the neutrons pass a zone with an 
alternating magnetic field (Fig. 2). Assume that P = (0, P, 0), and suppose 
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incident neutrons 

B = 0  

z 

B = B ( t ) e ,  

= Bocos (0at + q0)e, 

0 L 
B = 0  

IL 
y 

Fig .  2 

the wavefunction in 0 < y < L to be 

[,~l(t)'x , .y.  [,~(t)'x _,.py 
~',,(y) = t ,z , ( t ) )  e * t ,  z2(t)) e 

After substituting equation (4.1) into (1.3), we easily get 

. f~l( t) '~ [ m - / x 0 " 3 B ( t  ) 

.//g~2(t)'~l (m --/~0"3B(t) 

From equation (4.2a) we find 

(4.1) 

0" 2 
Zl ( t) = 7 [i~, ( t) - (m -- pa3B)c~, (t)] (4.3a) 

0" 2 . .  
c~, (t) = --fi [tZ, (t) + (m - #0"3 B)Z, (t)] (4.3b) 

We substitute equation (4.3a) into (4.3b) and obtain 

6", - 2i#0"3B~, + (p2 + m2)~b, _ ( i lw3B +/~2B2)~b, = 0 (4.4) 

Denoting ~ z ( t ) =  ~'l(t)e t~'t and # =  ( p 2 + m Z ) m ,  we get 

~'~ -- 2i(e" + lw3B)~' ,  - (il2a3B + 2#a3Be'  + #2B2)~b] = 0 (4.5) 

Let 

qS', (t) = (g(t)'~ 
\h ( t )  J 

(42a) 
- m  + ~0"3B(t) J \z ,(O ) 

- m  + lw3B( t ) )  \Z2(t) J 
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Then equat ion (4.5) becomes 

- 2i(e" + #B)~, -- (i#J~ + 2#B#  + #2BZ)g = 0 

/~" - 2 i (#  - #B)l~ + (i#B + 21~B# -- #2B2)h = 0 

The solutions o f  (4.6) are 

g( t) = e [#aB~ sin(o~t + q,)]/O~(C 1 ..[_ cze2ig t) 

h(t) = e {i~Bo~i~(,o,+ ~)]/O,(c ~ + c,2e2i~',) 

Thus,  

1009 

(4.6) 

(4.7) 

~b,(t) \ r / ( t ) /  \e-[ iu~osi"~'+r176 c~ei~'t)J 

1 ( + im.  - i 8o cos(o t + ) 
z I ( t )  ~- -fi k - ~  -- im{  + i#Bo cos(~ot  + q~){J 

(4.8b) 

The solution o f  equat ion (4.2b) can be obtained similarly. 
N o w  we only consider the positive energy states; the 4~ in three zones 

a r e  

( A )  ( A )  icy ~,, (4.9a) dpj= ' e iey- i~ ' t+r A" e 

( Ce[i#B~176176 ~e iPy'-ie't--t--( De[illB~176176 ~e -iPy-igt ( 4 . 9 b )  
~)'l=kctc--[i#Bosin(~~176176 ) ' \D'e t,.=o =m@~,+ ~o)1!<o/] 

F' 
= ( le icy- '<" (4.9c) 

q~m \ F ' ]  

where A, A ' ,  C, C ' ,  D, D ' ,  F, F '  are eight constant  coefficients. Here we 
omit ted the expressions o f  X. 

We suppose that  the neutrons reach y = 0 as t = 0 and y = L as t = T. 
F r o m  the boundary  condit ions we obtain 

C = e -(ilxB~162176 sin ~A 

C t = e(ipBo/w) sin ~A' 

D = re -(ioB~176 sin ~A 

D" = re (i~'B~176 sin v A , (4.10) 

F = e (iuBo/~ ~o) - ~i, r 1 + re -mL)A 

F '  = e -(0,,o/~O)[sinr + ~o) - ~i, ~o1( 1 + r e  -iPL)A' 

NOW we try to find the resonance condition.  It requires that  
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i.e., F/A = F'/A';  then we obtain 

UOo 
- -  [sin(~oT + q~) -- sin q~] = nn (4.11) 

to 

where n is an arbitrary integer. I f  r = 0, equation (4.11) becomes 

/tBo sin ogT = nrr (4.12) 
(D 

I f  the above condition is satisfied, the effect of  the magnetic field seems 
to be "eliminated." As a whole, the zone of  the magnetic field is like a free 
space. 
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